TOPIK POPULER
BUAT RUMUS

Daftar Rumus Terbaru

Komposisi transformasi matriks

\(= (T_2 . T_1) \begin{pmatrix} x \\ y \end{pmatrix} \) Artinya titik (x,y) ditransformasikan oleh T_1 dilanjutkan T_2

Dilatasi matriks [P(a,b), k]

\(= \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}\)

Dilatasi [0, k]

\(= \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\)

Rotasi matriks terhadap pusat P (a,b)

\(= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & cos\theta \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}\) dimana \(x' = (x-a) \cos \theta - (y-b) \sin \theta + a \\y' = (x-a) \sin \theta + (y-b) \cos \theta + b \)  

Rotasi matriks terhadap pusat 0, (0,0)

\(= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\) dimana \(x'= x\cos \theta - y \sin \theta \\y' = x \sin \theta + y \cos \theta\)